Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 30(26): 3123-3135, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31664873

RESUMO

The regulated assembly of multiple filamentous actin (F-actin) networks from an actin monomer pool is important for a variety of cellular processes. Chlamydomonas reinhardtii is a unicellular green alga expressing a conventional and divergent actin that is an emerging system for investigating the complex regulation of actin polymerization. One actin network that contains exclusively conventional F-actin in Chlamydomonas is the fertilization tubule, a mating structure at the apical cell surface in gametes. In addition to two actin genes, Chlamydomonas expresses a profilin (PRF1) and four formin genes (FOR1-4), one of which (FOR1) we have characterized for the first time. We found that unlike typical profilins, PRF1 prevents unwanted actin assembly by strongly inhibiting both F-actin nucleation and barbed-end elongation at equimolar concentrations to actin. However, FOR1 stimulates the assembly of rapidly elongating actin filaments from PRF1-bound actin. Furthermore, for1 and prf1-1 mutants, as well as the small molecule formin inhibitor SMIFH2, prevent fertilization tubule formation in gametes, suggesting that polymerization of F-actin for fertilization tubule formation is a primary function of FOR1. Together, these findings indicate that FOR1 and PRF1 cooperate to selectively and rapidly assemble F-actin at the right time and place.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Forminas/metabolismo , Profilinas/metabolismo , Polimerização , Tionas/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia
2.
Drug Metab Dispos ; 46(8): 1106-1117, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784728

RESUMO

Metabolic phenotype can be affected by multiple factors, including allelic variation and interactions with inhibitors. Human CYP2D6 is responsible for approximately 20% of cytochrome P450-mediated drug metabolism but consists of more than 100 known variants; several variants are commonly found in the population, whereas others are quite rare. Four CYP2D6 allelic variants-three with a series of mutations distal to the active site (*34, *17-2, *17-3) and one ultra-metabolizer with mutations near the active site (*53), along with reference *1 and an active site mutant of *1 (Thr309Ala)-were expressed, purified, and studied for interactions with the typical substrates dextromethorphan and bufuralol and the inactivator SCH 66712. We found that *34, *17-2, and *17-3 displayed reduced enzyme activity and NADPH coupling while producing the same metabolites as *1, suggesting a possible role for Arg296 in NADPH coupling. A higher-activity variant, *53, displayed similar NADPH coupling to *1 but was less susceptible to inactivation by SCH 66712. The Thr309Ala mutant showed similar activity to that of *1 but with greatly reduced NADPH coupling. Overall, these results suggest that kinetic and metabolic analysis of individual CYP2D6 variants is required to understand their possible contributions to variable drug response and the complexity of personalized medicine.


Assuntos
Citocromo P-450 CYP2D6/genética , Dextrometorfano/metabolismo , Etanolaminas/metabolismo , Imidazóis/metabolismo , Mutação/genética , NADP/metabolismo , Pirimidinas/metabolismo , Alelos , Domínio Catalítico/genética , Citocromo P-450 CYP2D6/metabolismo , Humanos , Inativação Metabólica , Cinética , Fenótipo
3.
Nat Struct Mol Biol ; 18(9): 1060-7, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21873985

RESUMO

Pathogen proteins targeting the actin cytoskeleton often serve as model systems to understand their more complex eukaryotic analogs. We show that the strong actin filament nucleation activity of Vibrio parahaemolyticus VopL depends on its three W domains and on its dimerization through a unique VopL C-terminal domain (VCD). The VCD shows a previously unknown all-helical fold and interacts with the pointed end of the actin nucleus, contributing to the nucleation activity directly and through duplication of the W domain repeat. VopL promotes rapid cycles of filament nucleation and detachment but generally has no effect on elongation. Profilin inhibits VopL-induced nucleation by competing for actin binding to the W domains. Combined, the results suggest that VopL stabilizes a hexameric double-stranded pointed end nucleus. Analysis of hybrid constructs of VopL and the eukaryotic nucleator Spire suggest that Spire may also function as a dimer in cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Bactérias/química , Vibrio parahaemolyticus/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Cristalografia por Raios X , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Profilinas/química , Profilinas/metabolismo , Profilinas/fisiologia , Estrutura Terciária de Proteína , Vibrio parahaemolyticus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...